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Importance of Energy Derivatives

Many important equilibrium properties are derivatives of the
(free) energy.

Forces, pressure, magnetization, polarization

Bulk modulus, compressibility, elastic constants
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Importance of Energy Derivatives

Reaction Coordinate

BO
 E

ne
rg

y

∆EAB

A

B

Global Energetics
Actual BO Energy
DFT BO Energy

Energy derivatives help us:

Find local minima in
the BO energy surface

Structural optimization
Structure searching

Describe the shape of
the local minima.

Phonons
Elastic properties
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Routine DFT Applications

The following are common DFT applications which have very little
competition from QMC.

1 Structural Optimization

Atomic positions and box geometries are chosen to minimize
enthalpy.
Ab initio random structure searching.

2 Phonon Spectra

Frozen-phonon technique.

3 Quantum Molecular Dynamics

Prohibitively expensive in QMC because we don’t usually have
access to forces or stresses.
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When Isn’t DFT Enough?

Plot1 of QMC enthalpy vs.
QMC pressure for several
ground state hydrogen
structures (C2c, Cmca12,
Cmca, Pbcn, and
mC24-C2c)

Structures optimized with
PBE (dashed lines) and
vdW-DF (solid lines)
functionals.

Up to 1mHa/atom enthalpy
differences
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1 Phys. Rev. B 89, 184106 (2014); doi:10.1103/PhysRevB.89.184106



Introduction Finite Differencing Estimators

Definitions

We will focus on energy derivatives w.r.t. structural deformations.

Force

Fα = −∇αE ({R}) (1)

Stress

Consider an infinitesimal isotropic deformation r′ = (I + ε)r

σαβ = − 1

Ω

∂E

∂εαβ
(2)
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Energy Derivatives: General Problem

λ

E

∆E
∆λ

∆E

∆λ

Finite-Differences

We only know energy up
to some error.

Causes a trade-off
between statistical and
systematic error.
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Finite Differencing Methods

2-point Finite Difference Formula

dE

dλ
=

E (λ+ ∆)− E (λ)

∆
+O(∆2) (3)

If there is statistical uncertainty in E, then

Var

[
dE

dλ

]
= 1

∆2 { Var [E (λ+ ∆)] + Var [E (λ)] (4)

−2Cov [E (λ+ ∆) | E (λ)] }

Notes:

There is a trade-off between statistical and systematic error.

Improve efficiency by maximizing Cov [E (λ+ ∆) | E (λ)]
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Correlated Sampling with VMC

Consider systems A and B, described by hamiltonians ĤA and ĤB .
Non-Correlated Sampling:

∆EAB =

(
1∫
Ψ2

A

∫
Ψ2

AE
A
L

)
−
(

1∫
Ψ2

B

∫
Ψ2

BE
B
L

)
(5)

Run two independent VMC simulations for the systems A & B.

Calculate EA and EB in post processing.

As ΨA → ΨB , Var [∆EAB ]→ 2Var [EA]
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Correlated Sampling with VMC

Correlated Sampling

∆EAB =
1∫
Π

∫
Π

(
Ψ2

A/Π

〈Ψ2
A/Π〉

EA
L −

Ψ2
B/Π

〈Ψ2
B/Π〉

EB
L

)
(6)

Run a single VMC simulation over the distribution Π

Chosen to minimize Var [∆EAB ]
“Umbrella sampling”: Π = Ψ2

A + Ψ2
B

“Space-Warp1 ”

As ΨA → ΨB , Var [∆EAB ]→ 0!

1
PRB 61, 16291 (2000); doi: 10.1103/PhysRevB.61.R16291
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Advantages

It’s a very general technique (keep it in your bag of tricks)

Works rigorously with VMC and RMC (and DMC with
approximations)

Disadvantages

Need a different trial wavefunction for each perturbation.

Need a minimum of 7 trial wavefunctions for stresses, and
3N+1 for forces.
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Hellmann-Feynman Theorem

Theorem

If |Ψ〉 is an eigenstate of Ĥ, or if |Ψ〉 is a variational minimum that
doesn’t explicitly depend on λ , then:

dEλ
dλ

= 〈Ψ|dĤ
dλ
|Ψ〉 (7)

Ô = dĤ
dλ we take as our ”Hellman-Feynman Estimator”

WARNING:

Remember the mean and variance must exist.

Subject to “mixed estimator” problem.
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Nielsen & Martin Stress Estimator2

Stress Estimator

σ̂αβ = −
∑
k

~2

2mk
∇kα∇kβ +

1

2

∑
k 6=k ′

(xkk ′)α(xkk ′)β
xkk ′

(
d

dxkk ′
V̂

)

Advanced feature in QMCPACK

Finite variance.

Mixed estimator.

Currently works for all-electron calculations bulk calculations.
Pseudopotentials later.

2PRB 32, 3780 (1985); doi: 10.1103/PhysRevB.32.3780
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Using the Stress Estimator

<hamiltonian name="h0" type="generic" target="e">

...

<estimator name="S" type="Force" mode="stress"

source="ion0" target="e"/>

...

</hamiltonian>

σij will appear as “S i j” in the scalar.dat file.
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Stress Estimator Test

Stress QMC (GPa) LDA % Er PBE % Er vdW-DF % Er vdW-DF2 % Er HSE % Er

σXX 76.59 ± 0.16 6.31 13.32 21.64 25.43 4.42
σYY 73.79 ± 0.16 6.61 14.24 23.33 27.67 2.98
σZZ 130.61 ± 0.14 -2.05 -2.70 -2.50 -2.64 -3.38
σXY 6.14 ± 0.12 0.94 -22.47 -45.95 -57.70 9.36
σXZ -2.24 ± 0.11 -8.90 26.90 71.54 97.28 -28.97
σYZ -2.84 ± 0.11 -40.72 -45.11 -51.22 -54.65 -0.64

Tested on a pure hydrogen system with Ne = 54 and a density
of rs = 1.60.

QMC stresses are finite-size corrected and extrapolated to
reduce mixed-estimator bias.

DFT errors with stresses are consistent with previous
benchmarking studies.
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Hellmann-Feynman Forces

We can try to evaluate the following estimator in QMC:

F̂α = −
−→
∇RαV ({r̂}, {R̂}) (8)

Problem: Estimator has a well defined mean, but infinite variance
for 1/r potentials.

〈F̂〉 = −Z
∫
r2dr dΩ ρ(r)

r̂

r2
(9)

〈F̂2〉 = Z 2

∫
r2dr dΩ ρ(r)

1

r4
(10)
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Ceperley-Chiesa-Zhang Estimator3

Eliminates divergence of the Hellmann-Feynman estimator by
filtering out s-wave component of the force-density. How is this
done?
First, create a sphere of radius R around ion.

〈Fz〉 = FO
z +−Z

∫
in
d3rρ(r)

z

r2
(11)

Define a force density as follows:

fz(r) = −Z
∫

dΩρ(r , θ, φ) cos(θ) (12)

3
PRL 94, 036404 (2005); doi: 10.1103/PhysRevLett.94.036404
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Ceperley-Chiesa-Zhang Estimator

Physically, fz(r)→ 0 linearly as r → 0.

fz(r) = −Z
∫

dΩρ(r , θ, φ) cos(θ) (13)

Given the general expansion of fz(r) in spherical harmonics:

fz(r) = −Z
∞∑
`=0

∑̀
m=−`

r `f `m

∫
dΩYm

` (θ, φ) = −Z
∞∑
`=0

a`r
` (14)

If we set the ` = 0 term to zero, we filter out the s-wave
component.
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Chiesa-Ceperley-Zhang Estimator

x

Fx = g(r) x
r3

Fx = x
r3

y

R

g(r) =
∑n

k=1 ak r
k+m

On physical grounds, we
can fix g(r) to cancel off
divergence.

Not zero-variance, not
zero-bias, but
systematically improvable.

Choose m, n, and R to
minimize variance and
bias.
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Using the Force Estimator

<hamiltonian name="h0" type="generic" target="e">

...

<estimator name="F" type="Force" mode="cep">

<parameter name="rcut">1.0</parameter>

<parameter name="nbasis">4</parameter>

<parameter name="weightexp">2</parameter>

</estimator>

...

</hamiltonian>

σij will appear as “F i j” in the scalar.dat file.
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Chiesa-Ceperley-Zhang: Open Boundary Conditions

DMC finite-difference forces used as reference.

Tested Chiesa-Ceperley-Zhang Estimator (R = 0.4, n = 5)
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Force Estimator Tests: Results

All QMC Chiesa
estimates
outperform PBE.

Dramatically more
efficient than
finite-differences for
large-scale
calculations.

Accuracy better
than 0.15%
compared to
finite-differencing.
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Chiesa-Ceperley-Zhang: Bulk Calculations

This framework also works for bulk calculations! Tested on solid
and liquid H systems, as well as H+He mixtures.

Uses the “optimized breakup” method of to handle the
long-range force contributions.

S-wave filtering on the short-range component of the force.
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Chiesa-Ceperley-Zhang: Bulk Calculations
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Pure liquid hydrogen system. Ne = 54, rs = 1.60.
Benchmarking application. Force errors relative to QMC and
HSE respectively.
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Chiesa-Ceperley-Zhang: Summary

Advantages

It’s simple (two parameters in the input file).

It’s accurate (much better than 1%).

It’s efficient for light elements.

Disadvantages

It’s a mixed estimator.

Error bar scales like Z 3 with atomic number.

Estimator is not zero-variance.
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Zero-Variance Zero-Bias Forces: Introduction

Consider the local energy estimator, EL(R) = ĤΨT
ΨT

. It has the
following desirable properties:

1 Zero-variance property:
Var [EL]→ 0 as ΨT → Φ0.

2 Zero-bias property:
〈EL〉Ψ2

T
→ E0 as ΨT → Φ0

Can we make other estimators that behave like this?
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Assaraf-Caffarel ZVZB Estimator4

d〈Ĥ〉ΨT Φ0

dλ
=

〈
dĤ

dλ
+

(Ĥ − EL)Ψλ

ΨT
+ 2(EL − 〈EL〉)

Ψλ

ΨT

〉
ΨT Φ0

(15)
Ingredients:

1 Bare Hellman-Feynman estimator: dĤ
dλ

2 Zero-variance term: (Ĥ−EL)Ψλ

ΨT

Cancels divergences in dĤ
dλ

Reduces statistical noise.

3 Zero-bias term: 2(EL − 〈EL〉) Ψλ
ΨT

4 Trial wavefunction ΨT and trial wavefunction derivative Ψλ

4
J. Chem. Phys. 119, 10536 (2003); doi: 10.1063/1.1621615
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ZVZB Advantages

As ΨT → Φ0 and Ψλ → Φλ,

Variance goes to 0

Estimator approaches the true dE0
dλ

Advantages over Chiesa-Ceperley-Zhang:

Efficiency tied to quality of trial wavefunctions, not underlying
estimator or distribution.

Errors might scale much better than Z 3.
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ZVZB Disadvantages

Ô =
dĤ

dλ
+

(Ĥ − EL)Ψλ

ΨT
+ 2(EL − 〈EL〉)

Ψλ

ΨT
(16)

1 Complexity

Need machinery to store, evaluate, and optimize trial
wavefunction derivatives.
Fixed-node calculations require special techniques to handle
nodal divergence.

2 What is a good trial wavefunction derivative?

Delicate treatment of nodal divergences needed.
What about core electrons?

3 What’s the best way to optimize this estimator?

Explore cost functions
Simultaneous optimization of many estimators.
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Current Research

Sandro Sorella

Quantum Molecular Dynamics in Hydrogen.
PRL 100, 114501 (2008); doi: 10.1103/PhysRevLett.100.114501
Nat. Comm. 5, 3487 (2014); doi: 10.1038/ncomms4487

Algorithmic Differentiation:
J. Chem. Phys. 133, 234111 (2010); doi: 10.1063/1.3516208

Assaraf-Caffarel estimator with VMC and DMC.
J. Chem. Phys. 119, 10536 (2003); doi: 10.1063/1.1621615

Poole, Foulkes, Spencer, Haynes:

Algorithmic differentiation and molecular dynamics in DMC.
APS March Meeting 2014 http://meetings.aps.org/link/BAPS.2014.MAR.S27.3
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Current Research

Saccani, Filippi, Moroni:

NEB calculations of molecules using QMC.
J. Chem. Phys. 138, 084109 (2013); doi: 10.1063/1.4792717

Improved ZV terms.
ES2013 http://es13.wm.edu/talks/Moroni.pdf

UIUC:

Benchmarking forces and stresses in H and H+He mixtures.
Using the Chiesa-Ceperley-Zhang estimator.
PRL 94, 036404 (2005); doi: 10.1103/PhysRevLett.94.036404
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Conclusions

Improved estimators make it possible to bring QMC levels of
accuracy to:

Structural optimization
Phonon calculations
Molecular Dynamics & Classical Monte Carlo

QMCPACK supports stresses and Chiesa-Ceperley-Zhang
estimators in isolated and bulk systems.

Research is ongoing to extend this to realizing previously
mentioned applications.

Anyone who is interested in discussions, examples, etc., feel free to
talk to me!
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